#formula (6.63)

 $spred = sqrt(MSE + s^2)$

c(Yhat - t*spred, Yhat + t*spred)

#Diagnostics are done the same way as before.

```
#Extra Sums of Squares
anova(Fit)
 #SumSq "Cases" is SSR( X1 )
 #SumSq "Costs" is SSR( X2 | X1 )
 #SumSq "Holiday" is SSR( X3 | X1, X2 )
SSR = sum(anova(Fit)[1:3,2]) #SSR(X1, X2, X3), by summing above three SSR
MSR = SSR / 3
                                \#MSR(X1, X2, X3) = SSR / df
                                #SSE(X1, X2, X3)
SSE = anova(Fit)[4,2]
                                #MSE(X1, X2, X3)
MSE = anova(Fit)[4,3]
#attain alternate decompositions of Extra Sums of Squares:
\#get SSR(X3), SSR(X1|X3) and SSR(X2|X1,X3)
Model2 = lm( Hours ~ Holiday+Cases+Costs, data=Data)
anova(Model2)
#to get SSR( X2, X3 | X1 ) = SSE( X1 ) - SSE( X1, X2, X3 ),
#use equation (7.4b). You need:
#run a linear model involving only X1 to obtain SSE( X1 ).
Model3 = lm( Hours ~ Cases, data=Data)
SSE.x1 = anova(Model3)[1,3]
#then calculate needed SSR
SSE.x1 - SSE
#similarly, you can apply all formulae given in section 7.1 by fitting reduced models
#(where you leave out one or two variables), and computing SSR and SSE.
#Gerenal Linear Test
#consider dropping Costs ( X2 ) from the model
\#test H0: Beta2 = 0
                   vs. Ha: Beta2 not= 0
Reduced = lm( Hours ~ Cases + Holiday, data=Data)
#perform F-test, comparing Reduced and Full models
anova(Reduced, Fit)
```